Ojai Basin Groundwater Model Development

November 15, 2011

Gregory Schnaar, Ph.D. Daniel B. Stephens & Associates, Inc. gschnaar@dbstephens.com (805) 681-2986 Santa Barbara, CA

Acknowledgements

- Project funded by California Department of Water Resources, Local Groundwater Assistance Grant
- Ojai Basin Groundwater Management Agency Project Grantee and Overseeing Agency
- Jordan Kear (Kear Groundwater) Grant proposal author, original project manager, and consulting hydrogeologist
- Golden State Water Company Provided a critical peer review of a 90% completion draft of the model documentation report
- Ventura County Watershed Protection District Provided database of groundwater monitoring data, and information regarding San Antonio Creek Spreading Grounds Rehabilitation Project (SACSGRP)

Ojai Groundwater Model: Project Background

- The project objective is to develop a groundwater model to support the evaluation of:
 - Alternative basin management scenarios
 - Hydrogeologic factors, including basin storage, effects of pumping, recharge, and discharge components of the system
 - Newly proposed pumping wells
 - Proposed conservation measures

Ojai Groundwater Model: Project Background

Question: What is a "Groundwater Model"?

 Answer: A computer model of a groundwater flow system, used by groundwater scientists to simulate and predict aquifer conditions. For this project, the computer model used is called MODFLOW-SURFACT.

Question: How is a Groundwater Model Useful?

- Answer: Groundwater models are used to
 - Organize all available information on factors that influence groundwater levels throughout a Basin
 - Estimate what factors most influence groundwater levels

 Predict, based on the best available science, how groundwater levels respond to different scenarios

Daniel B. Stephens & Associates, Inc.

Ojai Groundwater Model: Project Approach

- 1.) Data Collection and Reduction
- 2.) Develop Hydrogeologic Conceptual Model
- 3.) Translate into Numerical Groundwater Flow Computer Model
- 4.) Model Calibration
- 5.) Predictive Simulations
- 6.) Quality Assurance/Review
- 7.) Documentation

Ojai Groundwater Model: Basin Hydrogeology

Ojai Groundwater Model: Basin Hydrogeology

Ojai Groundwater Model: Basin Stratigraphy

04N22W06J07

Ojai Groundwater Model: Model Layering

Ojai Groundwater Model: Aquifer Properties

Ojai Groundwater Model: Model Extent and Grid

Ojai Groundwater Model: Model Boundary Conditions

- Recharge from Precipitation
- Recharge from Irrigation
- Recharge from Septic Systems, Spreading Grounds
- Riparian Evapotranspiration
- Discharge to Stream Channels
- Bedrock/Alluvial groundwater exchange
- Groundwater Extraction
- Downgradient flow

Ojai Groundwater Model: Recharge from Precipitation (*Distributed Parameter Watershed Model*)

Ojai Groundwater Model: Groundwater Extraction

Ojai Groundwater Model: Calibration (1970-2009)

15

Ojai Groundwater Model: Results

Ojai Groundwater Model: Model Mass Balance

	Average ac-ft/yr	Percent of Total
Groundwater I	nputs	
Recharge from precipitation, irrigation, septic		
systems, spreading grounds	6,780	100%
Groundwater O	utputs	
Groundwater pumping (wells)	4,147	61%
Discharge to streams	2,282	34%
Evapotranspiration	258	4%
Outflow to bedrock and downgradient alluvium	129	2%
Total Outlfow	6,816	
Change in Sto	orage	
Water released from storage	4,400	
Water entered into storage	4,371	
Net change in storage	-30	
	or	
Model Error		0.02%

Ojai Groundwater Model: Safe Yield Analysis

"Safe yield is the amount of naturally occurring groundwater that can be withdrawn from an aquifer on a sustained basis, economically and legally, without impairing the native groundwater quality or creating an undesirable effect such as environmental change" - Fetter, 2001

- Average Recharge¹: 6,615 ac-ft/yr
- Median Recharge¹: 5,026 ac-ft/yr
- Average Extraction² (1996 2009): 4,939 ac-ft/yr

NOTES:

 Total recharge (precipitation, irrigation, septic systems) minus historical artificial recharge in San Antonio Creek Spreading Grounds
Only for those wells screened within Basin Alluvium

Ojai Groundwater Model: Safe Yield Analysis

19

Ojai Groundwater Model: Effect of Long-Term Drought

Ojai Groundwater Model: Basin Resaturation after Drought (Layer 2)

Daniel B. Stephens & Associates, Inc.

- Amount of water that may be diverted is limited by regulatory requirements for a minimum of 1-foot of stream depth at the "point of compliance"
- DBS&A has previously estimated the allowed diversion based on historical stream flow data in the 100% design submittal to Ventura County Watershed Protection District.
- A simulation with the addition of recharge at SACSGRP was conducted for water years 1989-2004. The estimated allowed diversion was tabulated for each three-month model "stress period" and applied to the model.
- Model simulations assumed that all diverted water was accepted by the spreading grounds and readily recharged to the aquifer

"Benefit" = Difference in Groundwater Elevation with Addition of SACSGRP Project

Modeled Benefit of Proposed San Antonio Creek Spreading Grounds Rehabilitation Project (SACSGRP) at Well 04N22W05D03S

"Benefit" = Difference in Groundwater Elevation with Addition of SACSGRP Project

"Benefit" = Difference in Groundwater Elevation with Addition of SACSGRP Project

Ojai Groundwater Model: Additional Simulations

- Basin Response to Extended Wet Period
- Basin Response to Increased Pumpage (120%, 144% of current levels)
- Analysis of discharge rates to San Antonio Creek
- Model sensitivity analyses

Ojai Groundwater Model: Summary/Conclusions

- The Ojai Groundwater Model provides a state-of-the art technique for predicting groundwater levels in the Ojai Basin, and improves understanding of the Basin
- The primary groundwater input is recharge from precipitation; primary outputs are pumpage and discharge to creeks
- Current groundwater pumping levels are generally similar to 'safe yield' estimates, consistent with the observation of long-term stability in groundwater levels.
- In the case of a multi-year drought, current pumping levels will result in a significant decrease in groundwater levels in the basin

